ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Stephen D. Unwin, Peter P. Lowry, Michael Y. Toyooka
Nuclear Science and Engineering | Volume 171 | Number 1 | May 2012 | Pages 69-77
Technical Paper | doi.org/10.13182/NSE11-18
Articles are hosted by Taylor and Francis Online.
Conventional probabilistic risk assessments (PRAs) are not well suited to addressing long-term reactor operations. Since passive structures and components are among those for which replacement can be least practical, they might be expected to contribute increasingly to risk in an aging plant; yet, passives receive limited treatment in PRAs. Furthermore, PRAs produce only snapshots of risk based on the assumption of time-independent component failure rates. This assumption is unlikely to be valid in aging systems. The treatment of aging passive components in PRA presents challenges. Service data to quantify component reliability models are sparse, and this is exacerbated by the greater data demands of age-dependent reliability models. Another factor is that there can be numerous potential degradation mechanisms associated with the materials and operating environment of a given component. This deepens the data problem since risk-informed management of component aging will demand an understanding of the long-term risk significance of individual degradation mechanisms. In this paper we describe a Bayesian methodology that integrates metrics of materials degradation susceptibility with available plant service data to estimate age-dependent passive component reliabilities. Integration of these models into conventional PRA will provide a basis for materials degradation management informed by predicted long-term operational risk.