ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Hiroki Takezawa, Toru Obara
Nuclear Science and Engineering | Volume 171 | Number 1 | May 2012 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE09-59
Articles are hosted by Taylor and Francis Online.
This work aims to show the possibility of using the integral kinetic model, which is applicable to any geometry, for general space-dependent kinetic analysis. A space-dependent kinetic analysis methodology and code were developed based on the integral kinetic model. The developed kinetic analysis code was verified by comparing results from the developed code with the one-point model in the Godiva reactor geometry. It is possible to explain discrepancies between the two kinetic models using error introduced into Cij() in the fitting process of original Monte Carlo data Cij(kΔ). This is because the fitting error changes the mean generation time of a system. The verification concluded that it is important to always monitor the fitting error introduced to Cij() in order to understand the calculation results of the developed code. The space-dependent kinetic analysis code was also demonstrated in a fast-thermal coupled reactor geometry including feedback effects. The demonstration results showed a time difference in kinetic behaviors between a fast region and a thermal region that was theoretically expected to appear. In conclusion, this work shows a new approach to solving general space-dependent kinetic problems by using the integral kinetic model including feedback effects.