ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Surendra Mishra , R. S. Modak, S. Ganesan
Nuclear Science and Engineering | Volume 170 | Number 3 | March 2012 | Pages 280-289
Technical Paper | doi.org/10.13182/NSE10-84
Articles are hosted by Taylor and Francis Online.
Large-sized pressurized heavy water reactors (PHWRs) are neutronically loosely coupled and hence are prone to significant changes in flux shape during operation. As a result, they need a sophisticated regulation procedure based on an online flux mapping system (OFMS). During the reactor operation, neutron flux is continuously measured at certain predetermined in-core locations. The purpose of OFMS is to compute a detailed flux map at all points in the reactor, after every 2 min, by making use of the measured fluxes. The knowledge of detailed flux distribution is then used for an appropriate regulating action. The choice of computational method used by OFMS is of crucial importance because the method is expected to be both efficient and accurate and should work for a range of reactor configurations occurring during the operation. In this paper, three different methods, namely, flux synthesis, internal boundary condition, and combined least squares (CLSQ), are analyzed for their prospective use in the forthcoming 700-MW(electric) Indian PHWR. The CLSQ method is found to be most accurate, although it needs significant computation. A hybrid method that combines certain features of other methods is also studied and seems to give good accuracy with moderate computational effort.