ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Kaushik Banerjee, William R. Martin
Nuclear Science and Engineering | Volume 170 | Number 3 | March 2012 | Pages 234-250
Technical Paper | doi.org/10.13182/NSE10-77
Articles are hosted by Taylor and Francis Online.
The kernel density estimator (KDE) is used to represent Monte Carlo tallies. Two new neutron flux estimators and their variances are developed, namely the KDE collision and KDE track-length tallies. These new estimators are capable of estimating the flux and its variance at any point within a given domain without any bin structure. The strength of these two estimators is illustrated with numerical examples in one- and two-dimensional geometries. Convergence properties of the KDE estimators are discussed and the KDE estimators are compared with the functional expansion tally (FET) and the conventional histogram tally. The results show that the KDE tallies compare favorably with the FET and histogram tallies with respect to accuracy and convergence rate. Disadvantages of KDE estimators are also discussed, and some future research scopes in this area are identified.