ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Mathieu Hursin, Thomas J. Downar, Brendan Kochunas
Nuclear Science and Engineering | Volume 170 | Number 2 | February 2012 | Pages 151-167
Technical Paper | doi.org/10.13182/NSE10-75
Articles are hosted by Taylor and Francis Online.
The current state of the art in the analysis of a control rod ejection event in a pressurized water reactor (PWR) relies on homogenization methods in which the assembly-averaged power from a whole-core nodal neutronics simulator is used with some type of flux reconstruction to estimate the individual fuel rod power. Recently, there has been interest in taking advantage of methods that do not require homogenization, such as the DeCART code, to perform time-dependent neutron transport calculations. These calculations could provide not only more accurate pin power results but also intrapin power information during the transient. The work described in this paper is the analysis of a PWR control rod ejection transient using the nodal core simulator PARCS, which employs homogenization methods, and the method of characteristics (MOC) code DeCART, which treats the explicit geometry. Higher-fidelity methods such as those used by DeCART have the potential to quantify the homogenization and modeling errors inherent in the lower-order methods. The methods used in PARCS and DeCART are briefly described as well as the approach to generate the temperature feedback for the rod ejection event. The results are compared and discussed. For the considered transient scenario, PARCS and DeCART are in generally good agreement for the predicted global and local powers as well as for the temperature.