ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mathieu Hursin, Thomas J. Downar, Brendan Kochunas
Nuclear Science and Engineering | Volume 170 | Number 2 | February 2012 | Pages 151-167
Technical Paper | doi.org/10.13182/NSE10-75
Articles are hosted by Taylor and Francis Online.
The current state of the art in the analysis of a control rod ejection event in a pressurized water reactor (PWR) relies on homogenization methods in which the assembly-averaged power from a whole-core nodal neutronics simulator is used with some type of flux reconstruction to estimate the individual fuel rod power. Recently, there has been interest in taking advantage of methods that do not require homogenization, such as the DeCART code, to perform time-dependent neutron transport calculations. These calculations could provide not only more accurate pin power results but also intrapin power information during the transient. The work described in this paper is the analysis of a PWR control rod ejection transient using the nodal core simulator PARCS, which employs homogenization methods, and the method of characteristics (MOC) code DeCART, which treats the explicit geometry. Higher-fidelity methods such as those used by DeCART have the potential to quantify the homogenization and modeling errors inherent in the lower-order methods. The methods used in PARCS and DeCART are briefly described as well as the approach to generate the temperature feedback for the rod ejection event. The results are compared and discussed. For the considered transient scenario, PARCS and DeCART are in generally good agreement for the predicted global and local powers as well as for the temperature.