ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Will Palisades be the “comeback kid”?
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
Paul K. Romano, Benoit Forget
Nuclear Science and Engineering | Volume 170 | Number 2 | February 2012 | Pages 125-135
Technical Paper | doi.org/10.13182/NSE10-98
Articles are hosted by Taylor and Francis Online.
In this work we describe a new method for parallelizing the source iterations in a Monte Carlo criticality calculation. Instead of having one global fission bank that needs to be synchronized, as is traditionally done, our method has each processor keep track of a local fission bank while still preserving reproducibility. In doing so, it is required to send only a limited set of fission bank sites between processors, thereby drastically reducing the total amount of data sent through the network. The algorithm was implemented in a simple Monte Carlo code and shown to scale up to hundreds of processors and furthermore outperforms traditional algorithms by at least two orders of magnitude in wall-clock time.