ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Paolo Picca, Roberto Furfaro, Barry D. Ganapol
Nuclear Science and Engineering | Volume 170 | Number 2 | February 2012 | Pages 103-124
Technical Paper | doi.org/10.13182/NSE11-05
Articles are hosted by Taylor and Francis Online.
A novel multiproblem methodology devised to manufacture highly accurate numerical solutions of the linear Boltzmann equation is proposed. As an alternative to classical discretization schemes that focus on a single mesh, the multiproblem approach seeks transport solutions as the limit of a sequence of calculations executed on successively more refined grids. The sequence of approximations serves as a basis for the extrapolation of the solution toward its mesh-independent limit. Furthermore, the multiproblem strategy allows an optimization of the computational effort whenever compared to the single-grid approach. Indeed, the solution obtained on an unrefined mesh is employed as the starting guess for transport calculations on the next grid of the sequence, drastically reducing the number of inner iterations needed on the highly refined mesh. The efficiency of the algorithm may be further improved by combining the source iterations with a convergence acceleration scheme based on nonlinear extrapolation algorithms. To evaluate the performance of the proposed approach, the multiproblem methodology is applied to solve linear transport problems in spherical geometry, which are known to feature special properties whenever compared with the transport of particles in Cartesian geometry. The methodology is implemented by choosing the presumably simplest and most widespread numerical transport algorithm (i.e., discrete ordinates with diamond differences). Results show that five- to six-digit accuracy can be obtained in a competitive computational time without resorting to powerful workstations.