ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Cheikh M. Diop, Mireille Coste-Delclaux, Sébastien Lahaye
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 87-97
Technical Note | doi.org/10.13182/NSE10-94TN
Articles are hosted by Taylor and Francis Online.
In the frame of neutral-particle (neutron, gamma) transport, the uncertainty propagation calculation regarding the uncertainties on cross sections is often carried out without explicitly taking into account their probabilistic distribution. We investigate a new uncertainty propagation formalism where the cross-section uncertainty distributions are represented by probability tables.This technical note develops this approach for the steady-state slowing-down equation without upscattering and in an infinite medium. This work is based on a deterministic multiband formalism that takes into account multilevel probability tables for cross sections. The first level represents the variation of cross sections versus lethargy (or energy) in each group of the multigroup lethargy mesh and thus corresponds to the classical cross-section probability tables. The higher levels represent the uncertainties on each step of the first-level cross-section probability table. This method is validated against a Monte Carlo calculation in a case of neutron slowing down in a 238U-hydrogen homogeneous mixture, showing fully consistent numerical results. The main interest of the deterministic multilevel multiband formalism is that it gives not only the mean value and the variance but also a probabilistic distribution of the fluxes.In the near future, we plan to investigate more deeply the robustness of this new approach in relation to high values of cross-section uncertainties and to introduce cross-section uncertainty correlations as well. Meanwhile, the promise of this work is its extension to the general transport steady-state equation solved by the discrete ordinates (SN) or Monte Carlo methods.