ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Sherly Ray, R. S. Modak
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 75-86
Technical Note | doi.org/10.13182/NSE10-87TN
Articles are hosted by Taylor and Francis Online.
Numerical evaluation of the steady-state neutron flux distribution in a slightly subcritical nuclear reactor due to the presence of a fixed external source is considered by using neutron diffusion theory. It has been shown in the literature that in the particular case when keff is very close to unity (say, within 1 mk), many solution techniques face severe convergence problems. In this context, an acceleration method called Accelerated SubCritical Multiplication (ASCM), originally suggested in the well-known neutron transport code TORT, is investigated in this paper specifically for such cases. The studies are based on a realistic heavy water reactor test case analyzed by two-group diffusion theory. ASCM is found to work very well. It is useful even when the distributions of the external source and the fission source are vastly different. ASCM is based on iterative scaling of the overall flux level in the reactor. An alternative way to evaluate the “scaling factor” is discussed. A somewhat new ASCM-like scheme is suggested to accelerate the Jacobi and Gauss-Seidel iterations needed for the within-group calculations. Conditions for the effectiveness of this scheme are discussed. Implications of the present work in reactor kinetics and some other fields are indicated.