ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Megha Bhike, B. J. Roy, A. Saxena, R. K. Choudhury, S. Ganesan
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 44-53
Technical Paper | doi.org/10.13182/NSE10-63
Articles are hosted by Taylor and Francis Online.
Neutron-induced reaction cross sections for the reaction 232Th(n, )233Th have been measured at neutron energies of 1.6 ± 0.03 MeV, 2.2 ± 0.03 MeV, 3.0 ± 0.03 MeV, and 3.7 ± 0.03 MeV. We have also measured cross sections for the reactions 98Mo(n, )99Mo, 186W(n, )187W, 115In(n, )116m1In, and 92Mo(n, p)92mNb at a neutron energy of 3.2 ± 0.03 MeV. The 7Li(p, n)7Be reaction was used as the neutron source with the proton beam from the 14-MV Pelletron accelerator, Mumbai, and the standard off-line gamma counting method was followed for activation measurement. The present measurements supplement the existing data and provide new data in the neutron energy range where no results are available. While the cross-section values for the 98Mo(n, )99Mo and 186W(n, )187W reactions are reported for the first time, the data for 92Mo(n, p)92mNb exists with a large discrepancy between the two available data sets. For the 115In(n, )116m1In reaction, our measurement at 3.2 MeV is an additional data point where there exists significant disagreement among the data measured by different groups. The measurements are performed relative to the 115In(n, n′)115mIn and 197 Au(n, )198 Au cross sections of International Reactor Dosimetry File 2002. Detailed theoretical calculations using the statistical model code EMPIRE-II (latest version EMPIRE-2.19) have been performed. Good agreement with the present data along with the existing data set has been obtained by suitable adjustment of the level density parameter for all the systems. The experimental and theoretical results have been compared with the recent evaluations of ENDF/B-VII.0, JENDL-4.0, and JEFF-3.1.