ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Günyaz Ablay, Can Emre Koksal, Tunc Aldemir
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 27-43
Technical Paper | doi.org/10.13182/NSE10-21
Articles are hosted by Taylor and Francis Online.
A secure long-distance monitoring scheme is proposed for nuclear engineering applications using chaos synchronization and nonlinear observers for online transmittal of operational data, distance monitoring, fault detection, and other related processes. The proposed system consists of three components: (a) chaotic transmitter to encrypt and send signals coming from a message originating system, (b) chaotic receiver to decrypt information signals, and (c) reconstruction of the message originating system using the decrypted signals. The Lorenz chaotic system whose parameters are defined as nonlinear functions of the state variables to improve the security level of the chaos-based communication is considered as the chaotic encrypter. In the receiver section, a nonlinear observer is used to provide synchronization and to decrypt the message signal. A similar nonlinear observer is employed to reconstruct the message originating system state variables from the recovered message signal. Numerical results and case studies against certain passive eavesdropping attacks are provided to demonstrate the resilience of the proposed method. A reduced-order boiling water reactor model is used as the message originating system in the illustrations.