ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Günyaz Ablay, Can Emre Koksal, Tunc Aldemir
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 27-43
Technical Paper | doi.org/10.13182/NSE10-21
Articles are hosted by Taylor and Francis Online.
A secure long-distance monitoring scheme is proposed for nuclear engineering applications using chaos synchronization and nonlinear observers for online transmittal of operational data, distance monitoring, fault detection, and other related processes. The proposed system consists of three components: (a) chaotic transmitter to encrypt and send signals coming from a message originating system, (b) chaotic receiver to decrypt information signals, and (c) reconstruction of the message originating system using the decrypted signals. The Lorenz chaotic system whose parameters are defined as nonlinear functions of the state variables to improve the security level of the chaos-based communication is considered as the chaotic encrypter. In the receiver section, a nonlinear observer is used to provide synchronization and to decrypt the message signal. A similar nonlinear observer is employed to reconstruct the message originating system state variables from the recovered message signal. Numerical results and case studies against certain passive eavesdropping attacks are provided to demonstrate the resilience of the proposed method. A reduced-order boiling water reactor model is used as the message originating system in the illustrations.