ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Scott D. Ramsey, Gregory J. Hutchens
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 1-15
Technical Paper | doi.org/10.13182/NSE10-26
Articles are hosted by Taylor and Francis Online.
While stochastic neutron transport theories have been developed in rigorous detail, many applications have historically been investigated using the point-kinetics formulation. In this work we develop a space-dependent model using the diffusion approximation to the Pál-Bell probability generating function equation, resulting in a nonlinear analog of the conventional time-dependent neutron diffusion equation. We investigate a variety of approximate solutions for the time- and space-dependent survival probability in one-dimensional symmetric, one-speed, isotropic, delayed neutron precursor-free systems, and compare them to counterpart point-kinetics results. Following the theoretical developments, we apply the new results in the context of a criticality accident scenario, from which the importance of spatial effects is revealed.