ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. K. Choudhury, R. G. Thomas, A. K. Mohanty, S. S. Kapoor
Nuclear Science and Engineering | Volume 169 | Number 3 | November 2011 | Pages 334-339
Technical Note | doi.org/10.13182/NSE10-62
Articles are hosted by Taylor and Francis Online.
Calculations of the yield of neutrons due to the interaction of protons on a deuterium gas target have been carried out for the primary p - d breakup reaction as well as for the secondary processes due to nuclear reactions induced by the elastically scattered protons and deuterons. The experimental conditions of Bowman et al. reported in a recent work were simulated with respect to the measurements of neutron yields in the proton energy range 7 to 17 MeV. It is found that the primary breakup reaction is the main source of neutron production and the contribution to the neutron yield from the secondary processes is quite small, being of the order of 1% to 2%. Thus, the discrepancy reported by Bowman et al. between the measured neutron yields and the theoretical calculations based on the primary breakup reaction alone cannot be explained by the inclusion of secondary processes. The possible reasons for the observed discrepancy are discussed. The calculations were extended up to Ep = 100 MeV. The conclusion drawn by Bowman et al. regarding the energy cost per neutron at Ep = 100 MeV by extrapolating the empirical function fitted to the experimental data measured up to 17 MeV is not borne out by the present calculations.