ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
R. K. Choudhury, R. G. Thomas, A. K. Mohanty, S. S. Kapoor
Nuclear Science and Engineering | Volume 169 | Number 3 | November 2011 | Pages 334-339
Technical Note | doi.org/10.13182/NSE10-62
Articles are hosted by Taylor and Francis Online.
Calculations of the yield of neutrons due to the interaction of protons on a deuterium gas target have been carried out for the primary p - d breakup reaction as well as for the secondary processes due to nuclear reactions induced by the elastically scattered protons and deuterons. The experimental conditions of Bowman et al. reported in a recent work were simulated with respect to the measurements of neutron yields in the proton energy range 7 to 17 MeV. It is found that the primary breakup reaction is the main source of neutron production and the contribution to the neutron yield from the secondary processes is quite small, being of the order of 1% to 2%. Thus, the discrepancy reported by Bowman et al. between the measured neutron yields and the theoretical calculations based on the primary breakup reaction alone cannot be explained by the inclusion of secondary processes. The possible reasons for the observed discrepancy are discussed. The calculations were extended up to Ep = 100 MeV. The conclusion drawn by Bowman et al. regarding the energy cost per neutron at Ep = 100 MeV by extrapolating the empirical function fitted to the experimental data measured up to 17 MeV is not borne out by the present calculations.