ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Will Palisades be the “comeback kid”?
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
Jeremy Lloyd Conlin, Stephen J. Tobin, Adrienne M. LaFleur, Jianwei Hu, TaeHoon Lee, Nathan P. Sandoval, Melissa A. Schear
Nuclear Science and Engineering | Volume 169 | Number 3 | November 2011 | Pages 314-328
Technical Paper | doi.org/10.13182/NSE10-88
Articles are hosted by Taylor and Francis Online.
The quantification of the plutonium mass in spent nuclear fuel assemblies is an important measurement for nuclear safeguards practitioners. A program is well underway to develop nondestructive assay instruments that, when combined, will be able to quantify the plutonium content of a spent nuclear fuel assembly. Each instrument will quantify a specific attribute of the spent fuel assembly, e.g., the fissile content. In this paper, we present a Monte Carlo-based method of estimating the mean and distribution of some assembly attributes. An MCNPX model of each instrument has been created, and the response of the instrument was simulated for a range of spent fuel assemblies with discrete parameters (e.g., burnup, initial enrichment, and cooling time). The Monte Carlo-based method interpolates between the modeled results for an instrument to emulate a response for parameters not explicitly modeled. We demonstrate the usefulness of this technique in applying the technique to six different instruments under investigation. The results show that this Monte Carlo-based method can be used to estimate the assembly attributes of a spent fuel assembly based upon the measured response from the instrument.