ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
L. Heilbronn, C. J. Zeitlin, Y. Iwata, T. Murakami, T. Nakamura, S. Yonai, R. M. Ronningen, H. Iwase
Nuclear Science and Engineering | Volume 169 | Number 3 | November 2011 | Pages 279-289
Technical Paper | doi.org/10.13182/NSE10-112
Articles are hosted by Taylor and Francis Online.
Double-differential neutron yields from 400 MeV/nucleon 56Fe stopping in C, Al, Cu, and Pb targets are reported, along with Particle and Heavy Ion Transport Code System (PHITS) transport model calculations of the data. The yields were measured at 90, 120, and 160 deg in all four systems. Neutron energies were measured from 1 to 2 MeV up to a few hundred mega-electron-volts. The data augment previous measurements made by Kurosawa et al. that were reported for angles between 0 and 90 deg. The measurements for each target were made at two different target orientations, resulting in two different thicknesses of target that neutrons had to traverse before reaching the neutron detectors. The differences in the spectra between two different target orientations are due to neutron transport through the target and as such provide an interesting test of transport model calculations. The data indicate that PHITS reproduces the effects of neutron transport very well but may overestimate neutron production between energies of 10 to 50 MeV in some cases.