ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
H. M. Hashemian, Wendell C. Bean
Nuclear Science and Engineering | Volume 169 | Number 3 | November 2011 | Pages 262-278
Technical Paper | doi.org/10.13182/NSE10-48
Articles are hosted by Taylor and Francis Online.
Because fourth-generation (Generation IV) reactors will operate at coolant temperatures three or four times higher than light water reactors, up to ˜1000°C, they will require instrumentation and control sensors that have been qualified for these new and extreme environmental conditions. In the next 10 to 15 years, advances in sensors and transmitters for nuclear power plants (NPPs) are expected to include fiber-optic and wireless sensors. Three fiber-optic sensing technologies - single-point interferometry, distributed fiber Bragg grating, and optical counter and encoder techniques - most closely replace the functionality of the largest market fraction of conventional non-fiber-optic instrumentation currently installed in NPPs. The qualification of fiber-optic sensors for next-generation NPPs must address concerns over radiation darkening. Wireless sensor networks, typically built on the American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) ANSI/IEEE 802.11 or ANSI/IEEE 802.15.4 standards, provide NPPs with the capability to employ distributed processing, thereby increasing overall system redundancy and the potential to reduce hands-on maintenance and to improve reliability. Qualification of wireless sensors for NPPs must address concerns over security, reliability, and electromagnetic interference and radio-frequency interference. An appropriate industry standard should resolve all these concerns.