ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
H. M. Hashemian, Wendell C. Bean
Nuclear Science and Engineering | Volume 169 | Number 3 | November 2011 | Pages 262-278
Technical Paper | doi.org/10.13182/NSE10-48
Articles are hosted by Taylor and Francis Online.
Because fourth-generation (Generation IV) reactors will operate at coolant temperatures three or four times higher than light water reactors, up to ˜1000°C, they will require instrumentation and control sensors that have been qualified for these new and extreme environmental conditions. In the next 10 to 15 years, advances in sensors and transmitters for nuclear power plants (NPPs) are expected to include fiber-optic and wireless sensors. Three fiber-optic sensing technologies - single-point interferometry, distributed fiber Bragg grating, and optical counter and encoder techniques - most closely replace the functionality of the largest market fraction of conventional non-fiber-optic instrumentation currently installed in NPPs. The qualification of fiber-optic sensors for next-generation NPPs must address concerns over radiation darkening. Wireless sensor networks, typically built on the American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) ANSI/IEEE 802.11 or ANSI/IEEE 802.15.4 standards, provide NPPs with the capability to employ distributed processing, thereby increasing overall system redundancy and the potential to reduce hands-on maintenance and to improve reliability. Qualification of wireless sensors for NPPs must address concerns over security, reliability, and electromagnetic interference and radio-frequency interference. An appropriate industry standard should resolve all these concerns.