ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Keith C. Bledsoe, Jeffrey A. Favorite, Tunc Aldemir
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 208-221
Technical Paper | doi.org/10.13182/NSE10-28
Articles are hosted by Taylor and Francis Online.
The differential evolution method, a powerful stochastic optimization algorithm that mimics the process of evolution in nature, is applied to inverse transport problems with several unknown parameters of mixed types, including interface location identification, source composition identification, and material mass density identification, in spherical and cylindrical radioactive source/shield systems. In spherical systems, measurements of leakages of discrete gamma-ray lines are assumed, while in cylindrical systems, measurements of scalar fluxes of discrete lines at points outside the system are assumed. The performance of the differential evolution algorithm is compared to the Levenberg-Marquardt method, a standard gradient-based technique, and the covariance matrix adaptation evolution strategy, another stochastic technique, on a variety of numerical test problems with several (i.e., three or more) unknown parameters. Numerical results indicate that differential evolution is the most adept method for finding the global optimum for these problems. In spherical geometry, differential evolution implemented serially is run-time competitive with gradient-based methods, while a parallel version of differential evolution would be run-time competitive with gradient-based techniques in cylindrical geometry. A hybrid differential evolution/Levenberg-Marquardt method is also introduced, and numerical results indicate that it can be a fast and robust optimizer for inverse transport problems.