ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Chuanxin Zhu, Yuan Chen, Yunfeng Mou, Pu Zheng, Tie He, Xinhua Wang, Li An, Haiping Guo
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 188-197
Technical Paper | doi.org/10.13182/NSE10-35
Articles are hosted by Taylor and Francis Online.
Measurements of (n, 2n) reaction cross sections to produce 84Rb, 86Rb, 88Y, 139Ce, 141Ce, 168Tm, 174m+gLu, 180mTa, 184m+gRe, 196n+gAu, and 237U were carried out in the range of 13.4 to 14.8 MeV. The samples were irradiated at various positions on the surface of a two-ring orientation instrument with a 20-cm radius centered at the deuterium-tritium neutron source. The 27Al(n,)24Na reaction was used to monitor the neutron fluence in the target samples. The neutron energies of different directions were determined using the ratio of 89Zr to 92mNb specific activities induced in Zr and Nb foils by (n, 2n) reactions. The (n, 2n) products were measured using a calibrated Ge detector. Experimental uncertainty was within ±4%. The results are presented and compared with the results of references and ENDF/B-VII.0 evaluations. Cross sections of 85Rb(n, 2n)84Rb, 140Ce(n, 2n)139Ce, and 89Y(n, 2n)88Y were in good agreement with those of ENDF/B-VII.0 evaluations; however, disagreements were observed for 175Lu(n, 2n)174Lu and 142Ce(n, 2n)141Ce between the present data and the ENDF/B-VII.0 evaluation file. The present data showed improvement in accuracy in comparison with previously reported data; therefore, the results should be offered for evaluations of neutron (n, 2n) cross sections.