ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Jeremy Lloyd Conlin, James Paul Holloway
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 168-177
Technical Paper | doi.org/10.13182/NSE10-72
Articles are hosted by Taylor and Francis Online.
This paper introduces the explicitly restarted Arnoldi's method for calculating eigenvalues and eigenvectors in a Monte Carlo criticality calculation. Arnoldi's method is described along with the power method. The power method has been used for decades for Monte Carlo criticality calculations despite the availability of other algorithms with better convergence properties. The Monte Carlo application of the transport-fission operator of the Boltzmann transport equation is defined, and the Monte Carlo implementation of both Arnoldi's method and the power method are described. A brief discussion of eigenvalue and fission source convergence is given. Numerical simulations of one-demensional slab geometries are presented, demonstrating the convergence of both the eigenvalue and fission source (as measured by the Shannon entropy) for both Arnoldi's method and the power method. The results show that Arnoldi's method does not need to discard iterations like the power method because both the eigenvalue and fission source appear to converge immediately, even for problems with high dominance ratios.