ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Jeremy Lloyd Conlin, James Paul Holloway
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 168-177
Technical Paper | doi.org/10.13182/NSE10-72
Articles are hosted by Taylor and Francis Online.
This paper introduces the explicitly restarted Arnoldi's method for calculating eigenvalues and eigenvectors in a Monte Carlo criticality calculation. Arnoldi's method is described along with the power method. The power method has been used for decades for Monte Carlo criticality calculations despite the availability of other algorithms with better convergence properties. The Monte Carlo application of the transport-fission operator of the Boltzmann transport equation is defined, and the Monte Carlo implementation of both Arnoldi's method and the power method are described. A brief discussion of eigenvalue and fission source convergence is given. Numerical simulations of one-demensional slab geometries are presented, demonstrating the convergence of both the eigenvalue and fission source (as measured by the Shannon entropy) for both Arnoldi's method and the power method. The results show that Arnoldi's method does not need to discard iterations like the power method because both the eigenvalue and fission source appear to converge immediately, even for problems with high dominance ratios.