ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Dmitriy Y. Anistratov, Vladimir Ya. Gol'din
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 111-132
Technical Paper | doi.org/10.13182/NSE10-64
Articles are hosted by Taylor and Francis Online.
The methods for solving k-eigenvalue problems for the multigroup neutron transport equation in one-dimensional slab geometry are presented. They are defined by means of multigroup and effective grey (one-group) low-order quasidiffusion (QD) equations. In this paper we formulate and study different variants of nonlinear QD iteration algorithms. These methods are analyzed on a set of test problems designed using C5G7 benchmark data. We present numerical results that demonstrate the performance of iteration schemes in different types of reactor physics problems. We consider tests that represent single-assembly and color-set calculations as well as a problem with elements of full-core computations involving a reflector zone.