ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Y. S. Rana, S. B. Degweker
Nuclear Science and Engineering | Volume 169 | Number 1 | September 2011 | Pages 98-109
Technical Note | doi.org/10.13182/NSE11-A12499
Articles are hosted by Taylor and Francis Online.
Through our earlier papers, we have shown that reactor noise in accelerator-driven systems (ADS) is different from that in critical or radioactive source-driven subcritical systems due to periodically pulsed source and its non-Poisson character. We have developed a theory of reactor noise for ADS, taking into account the non-Poisson character of the source. Various noise descriptors, such as Rossi-alpha, Feynman-alpha (or variance to mean), power spectral density, and cross power spectral density, have been derived for a periodically pulsed source, including correlation between different pulses and finite pulses of different shapes. For mathematical simplicity, the theory was restricted to the case of prompt neutrons only. Recently, we extended the theory to the delayed neutron case and derived Feynman-alpha and Rossi-alpha formulae by considering the source to be a periodically pulsed non-Poisson source, without correlations between different pulses. The present paper extends the treatment to account for the possibility of correlations between pulses. Feynman-alpha and Rossi-alpha formulas are derived by considering the source to be a periodic sequence of delta function non-Poisson pulses, with exponential correlations.