ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Alain Hébert
Nuclear Science and Engineering | Volume 169 | Number 1 | September 2011 | Pages 81-97
Technical Note | doi.org/10.13182/NSE10-39
Articles are hosted by Taylor and Francis Online.
We are investigating a new class of linear characteristics schemes along finite-length tracks for solving the transport equation for neutral particles with scattering anisotropy. These algorithms are based on diamond differencing, as implemented with the method of discrete ordinates. The quadratic-order diamond-differencing (DD1) scheme is based on linear discontinuous coefficients that are derived through the application of approximations describing the mesh-averaged spatial flux moments in terms of spatial source moments and of the beginning- and end-of-segment flux values. This DD1 linear characteristics scheme is inherently conservative. This approach is an improvement relative to other linear characteristics schemes because no information needs to be collected on internal surfaces. Consequently, the DD1 scheme is compatible with existing tracking files for the collision-probability method. The proposed scheme is verified in one-dimensional slab geometry where it is found to be equivalent to a discrete ordinates solution and on simple two-dimensional benchmarks made of regular squares or hexagons.