ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
D. Rochman, A. J. Koning
Nuclear Science and Engineering | Volume 169 | Number 1 | September 2011 | Pages 68-80
Technical Paper | doi.org/10.13182/NSE10-66
Articles are hosted by Taylor and Francis Online.
This paper presents a novel approach to combine Monte Carlo optimization and nuclear data to produce an optimal adjusted nuclear data file. We first introduce the methodology, which is based on the so-called “Total Monte Carlo” and the TALYS system. As an original procedure, not only a single nuclear data file is produced for a given isotope but virtually an infinite number, defining probability distributions for each nuclear quantity. Then, each of these random nuclear data libraries is used in a series of benchmark calculations. With a goodness-of-fit estimator, a best evaluation for that benchmark set can be selected. To apply the proposed method, the neutron-induced reactions on 239Pu are chosen. More than 600 random files of 239Pu are presented, and each of them is tested with 120 criticality benchmarks. From this, the best performing random file is chosen and proposed as the optimum choice among the studied random set.