ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Xiao Gang
Nuclear Science and Engineering | Volume 169 | Number 1 | September 2011 | Pages 56-67
Technical Paper | doi.org/10.13182/NSE10-14
Articles are hosted by Taylor and Francis Online.
To obtain the probability distribution of the burst waiting time of neutron initiation in a multiplying assembly, a method that simulates the neutrons that induce a persistent fission chain is introduced in this paper. By this simulation method, neutron initiation experiments performed on Godiva-II and CFBR-II at a reactivity above prompt critical and performed on Godiva-I at a reactivity above delayed critical are studied. The probability density function of the burst waiting time of these experiments is calculated, and the results agree well with those of the experiments. Based on this simulation algorithm, the strength of the delayed neutron source changing with time is also calculated, which helps in the understanding of these neutron initiation experiments conducted on the pulse reactor.