ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Wei Ji, William R. Martin
Nuclear Science and Engineering | Volume 169 | Number 1 | September 2011 | Pages 19-39
Technical Paper | doi.org/10.13182/NSE10-73
Articles are hosted by Taylor and Francis Online.
In this paper the chord method is applied to the computation of Dancoff factors for doubly heterogeneous stochastic media, characteristic of prismatic and pebble bed designs of the Very High Temperature Gas-Cooled Reactor (VHTR), where TRISO fuel particles are randomly distributed in fuel compacts or fuel pebbles that are arranged in a full core configuration. Previous work has shown that a chord length probability distribution function (PDF) can be determined analytically or empirically and used to model VHTR lattices with excellent results. The key observation is that once the chord length PDF is known, Dancoff factors for doubly heterogeneous stochastic media can be expressed as closed-form expressions that can be evaluated analytically for infinite and finite media and semianalytically for a collection of finite media.Based on the assumption that the chord length PDF in the moderator region between two fuel kernels in a VHTR compact or pebble is exponential, which was shown to be an excellent approximation in previous work, closed-form expressions for Dancoff factors are derived for a range of configurations from infinite stochastic media to finite stochastic media, including multiple finite stochastic media in a background medium (e.g., a pebble bed core). Numerical comparisons with Monte Carlo benchmark results demonstrate that the closed-form expressions for the Dancoff factors for VHTR configurations are accurate over a range of packing fractions characteristic of prismatic and pebble bed VHTRs.