ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
S. B. Degweker, Imre Pázsit
Nuclear Science and Engineering | Volume 168 | Number 3 | July 2011 | Pages 248-264
Technical Paper | doi.org/10.13182/NSE10-08
Articles are hosted by Taylor and Francis Online.
Invariant imbedding theory is an alternative formulation of particle transport theory. Until very recently, this theory was used only for deterministic calculations, i.e., for calculations of the first moment of the particle distribution. In a previous paper we set up a probability balance equation in the invariant imbedding approach. An equation was also obtained for the probability generating functional (pgfl) of reflected particles from which equations for the first- and second-order densities were derived. The approach was illustrated by a simple forward-backward scattering model with and without incorporating energy dependence to describe sputtering due to an external source of energetic particles on a medium. In this paper we extend these results to the case of a distributed internal source of particles. Among the possible applications, we discuss the problem of internal sputtering. We derive equations for the pgfl and the first- and second-order densities and show their connection with the external source problem. We treat the finite slab problem in addition to the semi-infinite slab geometry considered in our previous paper.