ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Michael L. Corradini, James P. Blanchard, Carl J. Martin
Nuclear Science and Engineering | Volume 168 | Number 3 | July 2011 | Pages 185-196
Technical Paper | doi.org/10.13182/NSE10-24
Articles are hosted by Taylor and Francis Online.
The occurrence of a steam explosion for advanced light water reactors (LWRs), whether within or below the reactor pressure vessel in the cavity, is analyzed to determine the possible hazard to structures as a result of dynamic explosion pressures. In current LWRs, in-vessel steam explosions have been determined not to pose a risk-significant threat, while ex-vessel explosions are considered in safety analyses. In advanced LWRs, such analyses are important to demonstrate that such structures will maintain their integrity so that core debris coolability is possible. This paper presents an approach to calculate the dynamic pressures from a steam explosion using the TEXAS-V model and evaluate its effects on surrounding structures using ANSYS. Scenarios for advanced LWRs are reviewed, and a severe accident scenario is used as an example to present our methodology. Such evaluation methods should be considered in future safety studies and be verified with direct comparison to data for energetic fuel-coolant interaction, such as those provided from past KROTOS tests or with current experiments in the international SERENA project.