ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Michael L. Corradini, James P. Blanchard, Carl J. Martin
Nuclear Science and Engineering | Volume 168 | Number 3 | July 2011 | Pages 185-196
Technical Paper | doi.org/10.13182/NSE10-24
Articles are hosted by Taylor and Francis Online.
The occurrence of a steam explosion for advanced light water reactors (LWRs), whether within or below the reactor pressure vessel in the cavity, is analyzed to determine the possible hazard to structures as a result of dynamic explosion pressures. In current LWRs, in-vessel steam explosions have been determined not to pose a risk-significant threat, while ex-vessel explosions are considered in safety analyses. In advanced LWRs, such analyses are important to demonstrate that such structures will maintain their integrity so that core debris coolability is possible. This paper presents an approach to calculate the dynamic pressures from a steam explosion using the TEXAS-V model and evaluate its effects on surrounding structures using ANSYS. Scenarios for advanced LWRs are reviewed, and a severe accident scenario is used as an example to present our methodology. Such evaluation methods should be considered in future safety studies and be verified with direct comparison to data for energetic fuel-coolant interaction, such as those provided from past KROTOS tests or with current experiments in the international SERENA project.