ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Jeffrey A. Favorite, Ashley D. Thomas, Thomas E. Booth
Nuclear Science and Engineering | Volume 168 | Number 2 | June 2011 | Pages 115-127
Technical Paper | doi.org/10.13182/NSE09-72
Articles are hosted by Taylor and Francis Online.
Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine “cutoff” for particles whose surface-crossing cosines are below the cutoff. We concentrate on the flux crossing an external boundary, deriving the standard approach in a manner that explicitly points out three assumptions: (a) that the external boundary surface flux is isotropic or mostly isotropic, (b) that the cosine cutoff is small, and (c) that the minimum possible surface-crossing cosine is 0. We find that the requirement for accuracy of the standard surface flux estimate is more restrictive for external boundaries (a very isotropic surface flux) than for internal surfaces (an isotropic or linearly anisotropic surface flux). Numerical demonstrations involve analytic and semianalytic solutions for monoenergetic point sources irradiating surfaces with no scattering. We conclude with a discussion of potentially more robust approaches.