ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Bismark Tyobeka, Andreas Pautz, Kostadin Ivanov
Nuclear Science and Engineering | Volume 168 | Number 2 | June 2011 | Pages 93-114
Technical Paper | doi.org/10.13182/NSE10-60
Articles are hosted by Taylor and Francis Online.
We introduce a new coupled neutronics/thermal-hydraulics code system for analyzing transients of high-temperature gas-cooled reactors (HTGRs), based on a neutron transport theory approach. At the heart of the coupled code system resides the DORT-TD code, a time-dependent extension of the well-known DORT discrete ordinates code. DORT-TD uses a fully implicit time integration scheme and is coupled via its generalized thermal-hydraulics interface to the THERMIX-DIREKT code, an HTGR-specific heat conduction/convection code for pebble bed-type reactor cores. Feedback is accounted for by interpolating multigroup cross sections from libraries pregenerated with appropriate spectral codes. These libraries are structured for user-specified discrete sets of thermal-hydraulic parameters, e.g., fuel and moderator temperatures. The coupled code system is applied to a pebble bed HTGR model case, i.e., the PBMR 268 MW design. Steady-state studies are performed, and several design-basis and beyond-design-basis transients are simulated in an effort to assess the adequacy of using neutron diffusion theory against the more accurate but yet computationally more expensive neutron transport approach. Relatively small but significant differences arise from using either theoretical approach, from which it is concluded that transport theory as the more versatile tool should be used as reference to quantify the effects of the approximations inherent in diffusion and to gain confidence in its predictive power, especially in safety analyses. In an effort to validate the DORT-TD/THERMIX code system, the neutronics stand-alone solver is benchmarked against available transient benchmark exercises, and the coupled code system is applied to the Organisation for Economic Co-operation and Development/Nuclear Energy Agency/Nuclear Science Committee PBMR 400 MW Coupled Neutronics Thermal Hydraulics Transient Benchmark, demonstrating its remarkable viability for a wide range of safety cases. The final product is a high-fidelity, highly flexible, and well-validated state-of-the-art computer code system, with multiple capabilities to analyze HTGR safety-related transients in an accurate and efficient manner.