ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ho Jin Park, Hyung Jin Shim, Chang Hyo Kim
Nuclear Science and Engineering | Volume 167 | Number 3 | March 2011 | Pages 196-208
Technical Paper | doi.org/10.13182/NSE09-106
Articles are hosted by Taylor and Francis Online.
A new formulation aimed at quantifying uncertainties of Monte Carlo (MC) tallies such as keff and the microscopic reaction rates as well as nuclide number density estimates in MC depletion analysis is presented. It is shown that when the two major MC inputs - the microscopic cross sections and nuclide number densities - are assumed to have uncertainties, the variance of a given MC tally used as a measure of its uncertainty in this formulation arises from four sources: the statistical uncertainty of the MC tally, uncertainties of microscopic cross sections and nuclide number densities, and the cross correlations between them and the latter three contributions can be determined by computing correlation coefficients between uncertain variables. It is also shown that the variance of any given nuclide number density at the end of each depletion time step (DTS) stems from uncertainties of the nuclide number densities and microscopic reaction rates of nuclides at the beginning of each DTS, and they are determined by computing correlation coefficients between these two uncertain variables. The new formulation is incorporated into the Monte Carlo Code for Advanced Reactor Design (McCARD) of Seoul National University, and a McCARD depletion analysis for a U-TRU-Zr fuel assembly is performed to examine quantitatively the uncertainty propagation behavior of MC tallies such as k and the number densities of actinides as a function of DTS. The results demonstrate that the formulation is useful not only for quantifying the uncertainty propagation analysis in MC depletion analysis but also for identifying the types of nuclear cross-section data that need to be improved to obtain a more reliable incineration physics analysis of the transuranium fuel.