ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ho Jin Park, Hyung Jin Shim, Chang Hyo Kim
Nuclear Science and Engineering | Volume 167 | Number 3 | March 2011 | Pages 196-208
Technical Paper | doi.org/10.13182/NSE09-106
Articles are hosted by Taylor and Francis Online.
A new formulation aimed at quantifying uncertainties of Monte Carlo (MC) tallies such as keff and the microscopic reaction rates as well as nuclide number density estimates in MC depletion analysis is presented. It is shown that when the two major MC inputs - the microscopic cross sections and nuclide number densities - are assumed to have uncertainties, the variance of a given MC tally used as a measure of its uncertainty in this formulation arises from four sources: the statistical uncertainty of the MC tally, uncertainties of microscopic cross sections and nuclide number densities, and the cross correlations between them and the latter three contributions can be determined by computing correlation coefficients between uncertain variables. It is also shown that the variance of any given nuclide number density at the end of each depletion time step (DTS) stems from uncertainties of the nuclide number densities and microscopic reaction rates of nuclides at the beginning of each DTS, and they are determined by computing correlation coefficients between these two uncertain variables. The new formulation is incorporated into the Monte Carlo Code for Advanced Reactor Design (McCARD) of Seoul National University, and a McCARD depletion analysis for a U-TRU-Zr fuel assembly is performed to examine quantitatively the uncertainty propagation behavior of MC tallies such as k and the number densities of actinides as a function of DTS. The results demonstrate that the formulation is useful not only for quantifying the uncertainty propagation analysis in MC depletion analysis but also for identifying the types of nuclear cross-section data that need to be improved to obtain a more reliable incineration physics analysis of the transuranium fuel.