ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Will Palisades be the “comeback kid”?
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
Jinkai Wang, Warren D. Reece
Nuclear Science and Engineering | Volume 167 | Number 2 | February 2011 | Pages 154-164
Technical Paper | doi.org/10.13182/NSE09-94
Articles are hosted by Taylor and Francis Online.
The relative yields of delayed neutrons and the half-lives of their precursor nuclei are usually determined indirectly by the least-squares method based on the differences between experimental and fitted data. It is noted that the recommended values from ENDF/B-VII, ENDF/B-VI.8, JENDL-3.3, JEF-2.2, and JEFF-3.1 are significantly different. To evaluate these parameters, the measured data sets used in this research were simulated by the Monte Carlo method, and they were strict Poisson distributed data generated from Keepin's six-group data. Three different numerical methods (matrix inverse with singular value decomposition, Levenberg-Marquardt, and quasi Newton) with different regularization techniques were applied to estimate the parameter values. The fitted results were proven to be very unstable, and their calculated results were very different even for the same data set. Further investigation found ill-conditioned problems to be the reason for this instability. A better numerical method was suggested in this research.