ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Daniel F. Gill, Yousry Y. Azmy
Nuclear Science and Engineering | Volume 167 | Number 2 | February 2011 | Pages 141-153
Technical Paper | doi.org/10.13182/NSE09-98
Articles are hosted by Taylor and Francis Online.
We present an approach to the k-eigenvalue problem in multigroup diffusion theory based on a nonlinear treatment of the generalized eigenvalue problem. A nonlinear function is posed whose roots are equal to solutions of the k-eigenvalue problem; a Newton-Krylov method is used to find these roots. The Jacobian-vector product is found exactly or by using the Jacobian-free Newton-Krylov (JFNK) approximation. Several preconditioners for the Krylov iteration are developed. These preconditioners are based on simple approximations to the Jacobian, with one special instance being the use of power iteration as a preconditioner. Using power iteration as a preconditioner allows for the Newton-Krylov approach to heavily leverage existing power method implementations in production codes. When applied as a left preconditioner, any existing power iteration can be used to form the kernel of a JFNK solution to the k-eigenvalue problem. Numerical results generated for a suite of two-dimensional reactor benchmarks show the feasibility and computational benefits of the Newton formulation as well as examine some of the numerical difficulties potentially encountered with Newton-Krylov methods. The performance of the method is also seen to be relatively insensitive to the dominance ratio for a one-dimensional slab problem.