ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
D. A. Knoll, H. Park, Kord Smith
Nuclear Science and Engineering | Volume 167 | Number 2 | February 2011 | Pages 122-132
Technical Paper | doi.org/10.13182/NSE09-75
Articles are hosted by Taylor and Francis Online.
The use of the Jacobian-free Newton-Krylov (JFNK) method within the context of nonlinear diffusion acceleration (NDA) of source iteration is explored. The JFNK method is a synergistic combination of Newton's method as the nonlinear solver and Krylov methods as the linear solver. JFNK methods do not form or store the Jacobian matrix, and Newton's method is executed via probing the nonlinear discrete function to approximate the required matrix-vector products. Current application of NDA relies upon a fixed-point, or Picard, iteration to resolve the nonlinearity. We show that the JFNK method can be used to replace this Picard iteration with a Newton iteration. The Picard linearization is retained as a preconditioner. We show that the resulting JFNK-NDA capability provides benefit in some regimes. Furthermore, we study the effects of a two-grid approach, and the required intergrid transfers when the higher-order transport method is solved on a fine mesh compared to the low-order acceleration problem.