ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
I. Pázsit, A. Jonsson
Nuclear Science and Engineering | Volume 167 | Number 1 | January 2011 | Pages 61-76
Technical Paper | doi.org/10.13182/NSE10-15
Articles are hosted by Taylor and Francis Online.
The dynamic space- and frequency-dependent response of a molten salt reactor (MSR) to stationary perturbations is investigated in a simple analytical model. The Green's function of the system is investigated in the general case of arbitrary fuel recirculation velocity and in the limiting case of infinite fuel velocity, which permits closed-form solutions in both the static and dynamic cases. It is found that the amplitude of the induced noise is generally higher and the domain of the point kinetic behavior valid up to higher frequencies than in a corresponding traditional system. This is due to the differing behavior of the delayed neutron precursors as compared to the traditional case. The MSR equations are not self-adjoint and the adjoint equation and adjoint function have to be constructed, which is also done here. Finally, the space-dependent neutron noise, induced by propagating perturbations of the absorption cross section, is calculated. A number of interesting properties that are relevant to full-size MSRs are found and interpreted. The results are consistent with those in traditional systems, but the domains of various behavior regimes (point kinetic, space dependent, etc.) are shifted to higher frequencies or system sizes.