ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Pietro Mosca, Claude Mounier, Richard Sanchez, Gilles Arnaud
Nuclear Science and Engineering | Volume 167 | Number 1 | January 2011 | Pages 40-60
Technical Paper | doi.org/10.13182/NSE10-10
Articles are hosted by Taylor and Francis Online.
Users' demands for multigroup transport calculations are wide and diverse, encompassing routine, rough, and fast calculations as well as very precise simulations. For these reasons, the use of accurate and efficient multigroup cross-section libraries is needed. In this work, we present an adaptive energy mesh constructor (AEMC) that builds a multigroup mesh from predefined requisites of precision and calculation time. For a given self-shielding model and number of groups, AEMC looks for the optimal bounds of a multigroup mesh that minimizes the errors of the multigroup transport solutions for a predefined set of infinite homogeneous medium problems. We have applied this methodology to define two energy meshes for fast sodium reactor applications: a 600-group mesh associated with an extension of the Livolant-Jeanpierre self-shielding method and a 1200-group mesh based on subgroup self-shielding. Tests in homogeneous media prove that the multigroup solutions are almost equivalent to Monte Carlo simulations. Simplified one-dimensional transport calculations confirm the accuracy of the 1200-group mesh and show that this mesh provides a precision similar to that obtained with the well-validated 1968-group ECCO mesh. The same tests reveal that the 600-group mesh optimized for subgroup self-shielding offers a good compromise between simulation time and precision.