ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Victor Ontiveros, Adrien Cartillier, Mohammad Modarres
Nuclear Science and Engineering | Volume 166 | Number 3 | November 2010 | Pages 179-201
Technical Paper | doi.org/10.13182/NSE10-05
Articles are hosted by Taylor and Francis Online.
Fire simulation codes are powerful tools for use in risk-informed and performance-based approaches for risk assessment. Following initial work performed in a joint effort between the U.S. Nuclear Regulatory Commission and the Electric Power Research Institute of a verification and validation of five popular fire simulation codes and research performed at the University of Maryland to quantify total code output uncertainty following a “black-box” approach, this research presents a “white-box” methodology with the goal of also accounting for uncertainties within a simulation code prediction. In this paper the white-box probabilistic approach is discussed to assess uncertainties associated with fire simulation codes. Uncertainties associated with the input variables to the codes as well as the uncertainties associated with the submodels and correlations used inside the code are accounted for. To validate code output calculations, experimental tests may also be available to compare against code calculations. These experimental results may also be used in the assessment of the code uncertainties. Building upon earlier research on model uncertainty performed at the University of Maryland, the methodology employed to estimate the uncertainties is based on a Bayesian estimation approach. This Bayesian estimation approach integrates all evidence available to arrive at an estimate of the uncertainties associated with a reality of interest being estimated by the simulation code. Examples of applications with results of the associated uncertainties are discussed in this paper.