ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Victor Ontiveros, Adrien Cartillier, Mohammad Modarres
Nuclear Science and Engineering | Volume 166 | Number 3 | November 2010 | Pages 179-201
Technical Paper | doi.org/10.13182/NSE10-05
Articles are hosted by Taylor and Francis Online.
Fire simulation codes are powerful tools for use in risk-informed and performance-based approaches for risk assessment. Following initial work performed in a joint effort between the U.S. Nuclear Regulatory Commission and the Electric Power Research Institute of a verification and validation of five popular fire simulation codes and research performed at the University of Maryland to quantify total code output uncertainty following a “black-box” approach, this research presents a “white-box” methodology with the goal of also accounting for uncertainties within a simulation code prediction. In this paper the white-box probabilistic approach is discussed to assess uncertainties associated with fire simulation codes. Uncertainties associated with the input variables to the codes as well as the uncertainties associated with the submodels and correlations used inside the code are accounted for. To validate code output calculations, experimental tests may also be available to compare against code calculations. These experimental results may also be used in the assessment of the code uncertainties. Building upon earlier research on model uncertainty performed at the University of Maryland, the methodology employed to estimate the uncertainties is based on a Bayesian estimation approach. This Bayesian estimation approach integrates all evidence available to arrive at an estimate of the uncertainties associated with a reality of interest being estimated by the simulation code. Examples of applications with results of the associated uncertainties are discussed in this paper.