ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Victor Ontiveros, Adrien Cartillier, Mohammad Modarres
Nuclear Science and Engineering | Volume 166 | Number 3 | November 2010 | Pages 179-201
Technical Paper | doi.org/10.13182/NSE10-05
Articles are hosted by Taylor and Francis Online.
Fire simulation codes are powerful tools for use in risk-informed and performance-based approaches for risk assessment. Following initial work performed in a joint effort between the U.S. Nuclear Regulatory Commission and the Electric Power Research Institute of a verification and validation of five popular fire simulation codes and research performed at the University of Maryland to quantify total code output uncertainty following a “black-box” approach, this research presents a “white-box” methodology with the goal of also accounting for uncertainties within a simulation code prediction. In this paper the white-box probabilistic approach is discussed to assess uncertainties associated with fire simulation codes. Uncertainties associated with the input variables to the codes as well as the uncertainties associated with the submodels and correlations used inside the code are accounted for. To validate code output calculations, experimental tests may also be available to compare against code calculations. These experimental results may also be used in the assessment of the code uncertainties. Building upon earlier research on model uncertainty performed at the University of Maryland, the methodology employed to estimate the uncertainties is based on a Bayesian estimation approach. This Bayesian estimation approach integrates all evidence available to arrive at an estimate of the uncertainties associated with a reality of interest being estimated by the simulation code. Examples of applications with results of the associated uncertainties are discussed in this paper.