ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Scott D. Ramsey, Roy A. Axford, Gregory J. Hutchens
Nuclear Science and Engineering | Volume 166 | Number 1 | September 2010 | Pages 73-81
Technical Note | doi.org/10.13182/NSE09-63TN
Articles are hosted by Taylor and Francis Online.
Stochastic point kinetics neglecting delayed neutrons has been subject to rigorous analysis in the years since its introduction. Many approximate solutions appearing within this context are based upon the “quadratic approximation,” where fission multiplicity is truncated at two. In this technical note we review the quadratic approximation within the context of a stochastic, space-independent, one-energy-group model neglecting delayed neutrons and its generalization to higher-order approximations in transient and stationary systems. This generalization results in the probability of a zero neutron population for a source-free system being governed by transcendental and polynomial algebraic equations in the transient and infinite time limit cases, respectively. For 239Pu, we solve the transcendental equation over a wider range of prompt multiplication factors and times than has been previously accomplished. We also reproduce and generalize associated solutions of the polynomial algebraic equation. In both cases, solutions are computed for successive generalizations of the quadratic approximation to higher-order maximum fission multiplicity.