ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
James S. Warsa, Jeffery D. Densmore, Anil K. Prinja, Jim E. Morel
Nuclear Science and Engineering | Volume 166 | Number 1 | September 2010 | Pages 36-47
Technical Paper | doi.org/10.13182/NSE09-36
Articles are hosted by Taylor and Francis Online.
Spatially analytic SN solutions currently exist only under very limited circumstances. For cases in which analytical solutions may not be available, one can turn to manufactured solutions to test the properties of spatial transport discretization schemes. In particular, we show it is possible to use a manufactured solution to conduct such tests in the thick diffusion limit, even though the computed solution is independent of the problem characteristics. We show that a diffusion limit scaling with a manufactured solution source term results in an expression that is valid in the diffusion limit, though it is not of the standard form used in asymptotic diffusion limit analysis. We then derive a necessary, but not sufficient, condition that must be satisfied in order for a spatial discretization of the transport equation to preserve the thick diffusion limit. This condition is stated in terms of the difference between a numerically computed scalar flux solution compared against a known scalar flux. For a sufficiently diffusive problem and optically thick mesh cells, the necessary condition states that if a spatial discretization of the SN equations has the thick diffusion limit, the norm of the difference in the two solutions must converge to zero with decreasing mesh cell spacing. Based on the first observation that the diffusion limit holds for a manufactured solution source term, the known solution can conveniently be taken to be a manufactured solution in a mesh refinement numerical experiment to check whether a spatial discretization satisfies this condition. We present computational examples that verify our analysis and illustrate the expediency of this approach.