ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Massimiliano Fratoni, Ehud Greenspan
Nuclear Science and Engineering | Volume 166 | Number 1 | September 2010 | Pages 1-16
Technical Paper | doi.org/10.13182/NSE09-66
Articles are hosted by Taylor and Francis Online.
The capability to perform depletion analysis of pebble bed reactors has been traditionally limited to a few dedicated codes that are designed for helium-cooled reactors, rely on pregenerated problem-dependent group cross sections, and have limited flexibility in the materials and in the geometries they can model. This paper presents a newly developed tool to search for pebble bed reactor core equilibrium composition and calculate its neutronic characteristics. It uses MCNP for transport calculations and ORIGEN2 for depletion calculations and can generate effective one-group cross sections “on-the-fly” as pebbles move through the core using point-energy cross sections. This tool can be used for any coolant type including liquid salt, can model complex geometries, and can account for any level of heterogeneity. Also developed are two simplified methodologies that are based on unit-cell analysis and can considerably reduce the required computational time; they are useful for parametric studies.