ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Erin D. Fichtl, James S. Warsa, Jeffery D. Densmore
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 331-341
Technical Paper | doi.org/10.13182/NSE09-51
Articles are hosted by Taylor and Francis Online.
Under some circumstances, spatial discretizations of the SN transport equation will lead to negativity in the scalar flux; therefore, negative-flux fixup schemes are often employed to ensure that the flux is positive. The nonlinear nature of these schemes precludes the use of powerful linear iterative solvers such as Krylov methods; thus, solutions are generally computed using so-called source iteration (SI), which is a simple fixed-point iteration. In this paper, we use Newton's method to solve fixed-source SN transport problems with negative-flux fixup, for which the analytic form of the Jacobian is shown to be nonsingular. It is necessary to invert the Jacobian at each Newton iteration. Generally, an exact inversion is prohibitively expensive and furthermore is not necessary for convergence of Newton's method. In the inexact Newton-Krylov method, the Jacobian is inverted using a Krylov method, which completes at some prescribed tolerance. This tolerance may be quite large in the initial stages of the Newton iteration. In this paper, we compare the use of the exact Jacobian with two approximations of the Jacobian in the inexact Newton-Krylov method. The first approximation is a finite difference approximation. The second is that used in the Jacobian-free Newton-Krylov (JFNK) method, which performs a finite difference approximation without actually generating the Jacobian itself. Numerical results comparing standard SI with the three methods demonstrate that Newton-Krylov can outperform SI, particularly for diffusive materials. The results also show that the additional level of approximation introduced by the JFNK approach does not adversely affect convergence, indicating that JFNK will be robust and efficient in large-scale applications.