ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Erin D. Fichtl, James S. Warsa, Jeffery D. Densmore
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 331-341
Technical Paper | doi.org/10.13182/NSE09-51
Articles are hosted by Taylor and Francis Online.
Under some circumstances, spatial discretizations of the SN transport equation will lead to negativity in the scalar flux; therefore, negative-flux fixup schemes are often employed to ensure that the flux is positive. The nonlinear nature of these schemes precludes the use of powerful linear iterative solvers such as Krylov methods; thus, solutions are generally computed using so-called source iteration (SI), which is a simple fixed-point iteration. In this paper, we use Newton's method to solve fixed-source SN transport problems with negative-flux fixup, for which the analytic form of the Jacobian is shown to be nonsingular. It is necessary to invert the Jacobian at each Newton iteration. Generally, an exact inversion is prohibitively expensive and furthermore is not necessary for convergence of Newton's method. In the inexact Newton-Krylov method, the Jacobian is inverted using a Krylov method, which completes at some prescribed tolerance. This tolerance may be quite large in the initial stages of the Newton iteration. In this paper, we compare the use of the exact Jacobian with two approximations of the Jacobian in the inexact Newton-Krylov method. The first approximation is a finite difference approximation. The second is that used in the Jacobian-free Newton-Krylov (JFNK) method, which performs a finite difference approximation without actually generating the Jacobian itself. Numerical results comparing standard SI with the three methods demonstrate that Newton-Krylov can outperform SI, particularly for diffusive materials. The results also show that the additional level of approximation introduced by the JFNK approach does not adversely affect convergence, indicating that JFNK will be robust and efficient in large-scale applications.