ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Kirill Fedorovich Raskach
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 320-330
Technical Paper | doi.org/10.13182/NSE09-47
Articles are hosted by Taylor and Francis Online.
The differential operator method is an effective Monte Carlo technique developed for calculating derivatives and perturbations. It has often been applied to eigenvalue problems. This paper extends applicability of the method to inhomogeneous problems with internal and external neutron sources. Two issues associated with these problems were considered. First of all, it was necessary to use a special technique that treats inhomogeneous problems within the framework of the neutron generation method with a constant number of neutrons per generation. This technique optimizes Monte Carlo calculations and eliminates difficulties that appear in the classical technique as the effective multiplication factor approaches unity. Furthermore, use of the technique facilitated solving the usual issue of the differential operator method associated with fission source, or more exactly total neutron source, perturbations because some modification of the approach recently proposed for eigenvalue problems could be employed. The proposed technique can be used for calculating derivatives of reaction rates with respect to neutron cross sections or material densities. Perturbations of external source and geometrical parameters were outside the scope of this work.