ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kirill Fedorovich Raskach
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 320-330
Technical Paper | doi.org/10.13182/NSE09-47
Articles are hosted by Taylor and Francis Online.
The differential operator method is an effective Monte Carlo technique developed for calculating derivatives and perturbations. It has often been applied to eigenvalue problems. This paper extends applicability of the method to inhomogeneous problems with internal and external neutron sources. Two issues associated with these problems were considered. First of all, it was necessary to use a special technique that treats inhomogeneous problems within the framework of the neutron generation method with a constant number of neutrons per generation. This technique optimizes Monte Carlo calculations and eliminates difficulties that appear in the classical technique as the effective multiplication factor approaches unity. Furthermore, use of the technique facilitated solving the usual issue of the differential operator method associated with fission source, or more exactly total neutron source, perturbations because some modification of the approach recently proposed for eigenvalue problems could be employed. The proposed technique can be used for calculating derivatives of reaction rates with respect to neutron cross sections or material densities. Perturbations of external source and geometrical parameters were outside the scope of this work.