ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Bruno Turcksin, Jean C. Ragusa, Wolfgang Bangerth
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 305-319
Technical Paper | doi.org/10.13182/NSE09-34
Articles are hosted by Taylor and Francis Online.
We investigate application of goal-oriented mesh adaptivity to the SPN multigroup equations. This technique utilizes knowledge of the computational goal and combines it with mesh adaptivity to accurately and rapidly compute quantities of interest. Specifically, the local error is weighted by the importance of a given cell toward the computational goal, resulting in appropriate goal-oriented error estimates. Even though this approach requires the solution of an adjoint (dual) problem, driven by a specific source term for a given quantity of interest, the work reported here clearly shows the benefits of such a method.We demonstrate the level of accuracy this method can achieve using two-dimensional and three-dimensional numerical test cases for one-group and two-group models and compare results with more traditional mesh refinement and uniformly refined meshes. The test cases consider situations in which the radiative flux of a source is shielded and are designed to prototypically explore the range of conditions under which our methods improve on other refinement algorithms. In particular, they model strong contrasts in material properties, a situation ubiquitous in nuclear engineering.