ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Bruno Turcksin, Jean C. Ragusa, Wolfgang Bangerth
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 305-319
Technical Paper | doi.org/10.13182/NSE09-34
Articles are hosted by Taylor and Francis Online.
We investigate application of goal-oriented mesh adaptivity to the SPN multigroup equations. This technique utilizes knowledge of the computational goal and combines it with mesh adaptivity to accurately and rapidly compute quantities of interest. Specifically, the local error is weighted by the importance of a given cell toward the computational goal, resulting in appropriate goal-oriented error estimates. Even though this approach requires the solution of an adjoint (dual) problem, driven by a specific source term for a given quantity of interest, the work reported here clearly shows the benefits of such a method.We demonstrate the level of accuracy this method can achieve using two-dimensional and three-dimensional numerical test cases for one-group and two-group models and compare results with more traditional mesh refinement and uniformly refined meshes. The test cases consider situations in which the radiative flux of a source is shielded and are designed to prototypically explore the range of conditions under which our methods improve on other refinement algorithms. In particular, they model strong contrasts in material properties, a situation ubiquitous in nuclear engineering.