ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Thomas M. Evans, Kevin T. Clarno, Jim E. Morel
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 292-304
Technical Paper | doi.org/10.13182/NSE09-28
Articles are hosted by Taylor and Francis Online.
We have developed a modification of the two-grid upscatter acceleration scheme of Adams and Morel. The modified scheme uses a low-angular-order discrete ordinates equation to accelerate Gauss-Seidel multigroup iteration. This modification ensures that the scheme does not suffer from consistency problems that can affect diffusion-accelerated methods in multidimensional, multimaterial problems. The new transport two-grid scheme is very simple to implement for different spatial discretizations because it uses the same transport operator. The scheme has also been demonstrated to be very effective on three-dimensional, multimaterial problems. On simple one-dimensional graphite and heavy-water slabs modeled in three dimensions with reflecting boundary conditions, we see reductions in the number of Gauss-Seidel iterations by factors of 75 to 1000. We have also demonstrated the effectiveness of the new method on neutron well-logging problems. For forward problems, the new acceleration scheme reduces the number of Gauss-Seidel iterations by more than an order of magnitude with a corresponding reduction in the run time. For adjoint problems, the speedup is not as dramatic, but the new method still reduces the run time by greater than a factor of 6.