ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Thomas M. Evans, Kevin T. Clarno, Jim E. Morel
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 292-304
Technical Paper | doi.org/10.13182/NSE09-28
Articles are hosted by Taylor and Francis Online.
We have developed a modification of the two-grid upscatter acceleration scheme of Adams and Morel. The modified scheme uses a low-angular-order discrete ordinates equation to accelerate Gauss-Seidel multigroup iteration. This modification ensures that the scheme does not suffer from consistency problems that can affect diffusion-accelerated methods in multidimensional, multimaterial problems. The new transport two-grid scheme is very simple to implement for different spatial discretizations because it uses the same transport operator. The scheme has also been demonstrated to be very effective on three-dimensional, multimaterial problems. On simple one-dimensional graphite and heavy-water slabs modeled in three dimensions with reflecting boundary conditions, we see reductions in the number of Gauss-Seidel iterations by factors of 75 to 1000. We have also demonstrated the effectiveness of the new method on neutron well-logging problems. For forward problems, the new acceleration scheme reduces the number of Gauss-Seidel iterations by more than an order of magnitude with a corresponding reduction in the run time. For adjoint problems, the speedup is not as dramatic, but the new method still reduces the run time by greater than a factor of 6.