ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Thomas E. Booth, James E. Gubernatis
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 283-291
Technical Paper | doi.org/10.13182/NSE09-62
Articles are hosted by Taylor and Francis Online.
Recently, we proposed a modified power iteration method that simultaneously determines the dominant and subdominant eigenvalues and eigenfunctions of a matrix or a continuous operator. One advantage of this method is the convergence rate to the dominant eigenfunction being [vertical bar]k3[vertical bar]/k1 instead of [vertical bar]k2[vertical bar]/k1, a potentially significant acceleration. One challenge for a Monte Carlo implementation of this method is that the second eigenfunction is represented by particles of both positive and negative weights that somehow must sum (cancel) to estimate the second eigenfunction faithfully. Our previous Monte Carlo work has demonstrated the improved convergence rate by using a point flux estimator method and a binning method to effect this cancellation. This paper presents an exact method that cancels over a region instead of at points or in small bins and has the potential of being significantly more efficient than the other two.