ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yan Cao, John C. Lee
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 270-282
Technical Paper | doi.org/10.13182/NSE09-32
Articles are hosted by Taylor and Francis Online.
For pulsed-neutron experiments performed in a subcritical reactor, the reactivity obtained from the area-ratio method is sensitive to detector positions. The spatial effects are induced by the presence of both the prompt neutron harmonics and the delayed neutron harmonics in the reactor. The traditional kinetics distortion factor is only limited to correcting the spatial effects caused by the fundamental prompt- mode. In this paper, we derive spatial correction factors fp and fd to account for spatial effects induced by the prompt neutron harmonics and the delayed neutron harmonics, respectively. Our numerical simulations with the FX2-TH time-dependent multigroup diffusion code indicate that the high-order prompt neutron harmonics lead to significant spatial effects and cannot be neglected in calculating the spatial correction factors. The prompt spatial correction factor fp can be simply determined by the ratio of the normalized detector responses corresponding to the fundamental k-mode and the prompt neutron flux integrated over the pulse period. Thus, it is convenient to calculate and provides physically intuitive explanations on the spatial dependence of reactivity measured in the MUSE-4 experiments: overestimation of the subcriticality in regions close to the external neutron source and underestimation of the subcriticality away from the source but within the fuel region.