ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Will Palisades be the “comeback kid”?
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
Tobias Lundqvist Saleh, Staffan Jacobsson Svärd, Ane Håkansson, A. Bäcklin
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 232-239
Technical Note | doi.org/10.13182/NSE09-23TN
Articles are hosted by Taylor and Francis Online.
A tomographic technique for determination of the thermal power distribution in nuclear fuel assemblies is under development. The purpose is to provide an experimental validation tool for core simulation codes. Such codes are essential for the operation of nuclear power reactors, and validation is important in the process of improving and developing the codes as well as the fuel.The tomographic method is nonintrusive and offers large amounts of data within a normal revision shutdown. In earlier experimental investigations using a test platform, the method proved useful, demonstrating results of satisfying quality. However, the measuring setup also revealed nonfeasible properties related to transport, decontamination, and background radiation shielding.In this paper, the design of a new measuring device is presented. It is based on experiences from the test platform, but its size and weight make it advantageous regarding transports and decontamination. Moreover, the design inherently allows for more efficient background shielding.The latter has been investigated in a detailed study using the MCNP simulation code. The results confirm the high levels of background radiation observed in the test platform. It is also concluded that the shielding properties in the new design are sufficient.