ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Aya Diab, Michael Corradini
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 180-199
Technical Paper | doi.org/10.13182/NSE08-18
Articles are hosted by Taylor and Francis Online.
Two-dimensional (2-D) experiments have been conducted to study the phenomenon of liquid entrainment associated with interfacial hydrodynamic instabilities, in particular, the Rayleigh-Taylor instability (RTI). The current work is part of an effort to understand the phenomenon of RTI associated with the rapid expansion of a superheated steam bubble that may occur in a CANDU reactor. The goal of the present work is to quantify the entrainment phenomenon associated with the RTI pertinent to the growth of a 2-D air bubble expanding adiabatically against a 2-D pool of water for a range of operating pressures. This experimental work is similar to that undertaken three decades ago at Massachusetts Institute of Technology, but the geometry has been modified to decrease the blowdown chute volume in order to reduce the experimental uncertainties. The entrainment phenomenon is characterized by means of two parameters that can be used to verify a semiempirical model developed in a parallel modeling effort. Specifically, the first parameter quantifies the width of the mixing zone, and the second parameter quantifies the volumetric ratio between the entrained liquid and the mixing zone. Comparing the experimental data with the model predictions is used to validate the developed model.