ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Aya Diab, Michael Corradini
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 180-199
Technical Paper | doi.org/10.13182/NSE08-18
Articles are hosted by Taylor and Francis Online.
Two-dimensional (2-D) experiments have been conducted to study the phenomenon of liquid entrainment associated with interfacial hydrodynamic instabilities, in particular, the Rayleigh-Taylor instability (RTI). The current work is part of an effort to understand the phenomenon of RTI associated with the rapid expansion of a superheated steam bubble that may occur in a CANDU reactor. The goal of the present work is to quantify the entrainment phenomenon associated with the RTI pertinent to the growth of a 2-D air bubble expanding adiabatically against a 2-D pool of water for a range of operating pressures. This experimental work is similar to that undertaken three decades ago at Massachusetts Institute of Technology, but the geometry has been modified to decrease the blowdown chute volume in order to reduce the experimental uncertainties. The entrainment phenomenon is characterized by means of two parameters that can be used to verify a semiempirical model developed in a parallel modeling effort. Specifically, the first parameter quantifies the width of the mixing zone, and the second parameter quantifies the volumetric ratio between the entrained liquid and the mixing zone. Comparing the experimental data with the model predictions is used to validate the developed model.