ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Brian C. Franke, Ronald P. Kensek
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 170-179
Technical Paper | doi.org/10.13182/NSE08-68
Articles are hosted by Taylor and Francis Online.
We describe a method that enables Monte Carlo calculations to automatically achieve a user-prescribed error of representation for numerical results. Our approach is to iteratively adapt Monte Carlo functional-expansion tallies (FETs). The adaptivity is based on assessing the cellwise 2-norm of error due to both functional-expansion truncation and statistical uncertainty. These error metrics have been detailed by others for one-dimensional distributions. We extend their previous work to three-dimensional distributions and demonstrate the use of these error metrics for adaptivity. The method examines Monte Carlo FET results, estimates truncation and uncertainty error, and suggests a minimum-required expansion order and run time to achieve the desired level of error. Iteration is required for results to converge to the desired error. Our implementation of adaptive FETs is observed to converge to reasonable levels of desired error for the representation of four distributions. In practice, some distributions and desired error levels may require prohibitively large expansion orders and/or Monte Carlo run times.