ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
National awards to be presented at ANS Winter Conference
One of the few constants at American Nuclear Society national meetings is the recognition of exceptional individuals in the nuclear community. ANS President Lisa Marshall has named this season’s award recipients, who will receive recognition at the upcoming Winter Conference and Expo in Orlando, Fla.
ANS also announces the winners of awards presented by the Society’s professional divisions. These awards will be mailed to the recipients, and the divisions will recognize honorees at various division functions and meetings this fall. The 19 professional divisions of ANS are constituent units and represent a vast array of nuclear science and technology disciplines.
G. Leinweber, D. P. Barry, J. A. Burke, N. J. Drindak, Y. Danon, R. C. Block, N. C. Francis, B. E. Moretti
Nuclear Science and Engineering | Volume 164 | Number 3 | March 2010 | Pages 287-303
Technical Paper | doi.org/10.13182/NSE08-76
Articles are hosted by Taylor and Francis Online.
The electron linear accelerator facility at the Rensselaer Polytechnic Institute was used to explore neutron interactions with molybdenum in the energy region from 10 eV to 2 keV. Neutron capture and transmission measurements were performed by the time-of-flight technique. Resonance parameters were extracted from the data using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. Two transmission measurements were performed at a flight path of 25 m with a 6Li glass scintillation detector. The neutron capture measurements were performed at a flight path of 25 m with a 16-segment sodium iodide multiplicity detector. Nine different thicknesses of elemental molybdenum metal samples ranging from 0.051 mm (0.002 in.) to 6.35 mm (0.250 in.) were measured in either capture or transmission. Reductions in resonance integrals were observed when compared to ENDF/B-VII.0 for six of the seven stable isotopes. The largest reductions were 9% in 97Mo and 11% in 100Mo. The one measured increase in resonance integral relative to ENDF/B-VII.0 occurred in 95Mo, and it was significant (10%). The measured distribution of neutron widths for 95Mo and 97Mo are a better match to a Porter-Thomas distribution than those of ENDF/B-VII.0. Neutron strength functions for 95Mo and 97Mo were measured and compared to ENDF/B-VII.0. The strength of 95Mo and 97Mo are within uncertainties of each other. The measured radiation width distribution for 95Mo and 97Mo are compared to those of ENDF/B-VII.0 and to 2 distributions. Significant aspects of this analysis are the assignment of radiation widths, the determination of the transmission resolution function, and the propagation of experimental uncertainties into resonance parameter uncertainties.