ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Jaakko Leppänen
Nuclear Science and Engineering | Volume 174 | Number 3 | July 2013 | Pages 318-325
Technical Paper | doi.org/10.13182/NSE12-54
Articles are hosted by Taylor and Francis Online.
This paper presents a methodology for applying continuously varying density distributions in Monte Carlo particle transport simulation. The capability is implemented in the Serpent 2 code, as part of an effort for developing a universal multiphysics interface for the coupling of Monte Carlo neutronics to thermal hydraulics and fuel performance codes. The method is based on rejection sampling of particle path lengths, but despite its close resemblance to the Woodcock delta-tracking method, the routine can be used with conventional surface tracking as well. The modified tracking routine is put to the test in a simple boiling water reactor pin-cell calculation with continuously changing void distribution in the coolant channel.